Skip to main content

2024 | OriginalPaper | Buchkapitel

11. Advanced Carbon-Based Nanostructured Framework for Li Anodes

verfasst von : Asadullah Dawood, Junaid Ahmad, Sami Ullah, Zeenat Jabeen, Zeeshan Asghar

Erschienen in: Lithium-Sulfur Batteries: Key Parameters, Recent Advances, Challenges and Applications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In light of rising global resource consumption and the looming environmental crises, renewable energy sources are increasingly being explored in industries, transportations, and households. Novel energy materials and related high-energy-density storage technologies have received a lot of attention. Lithium (Li) metal is the most promising anode for implementing a high-performance energy storage system due to its elevated theoretical capacity. Uncontrollable dendrite formation, high volume change, and unstable solid electrolyte interface layer raise a slew of problems (low Coulombic efficiency, serious safety hazard, short lifetime, and so on) that make practical use of Li-metal anodes a pipe dream. To address these issues, researchers have focused their efforts on accommodating and guiding Li deposition as well as stabilizing the interface using a variety of carbon materials, which have proven to be highly effective due to their wide variety and excellent tunability of the structure–property relationship. This chapter primarily provides an overview of the crucial function of carbon-based hosts in increasing the overall performance of Li-metal anodes. The basic failure process of lithium metal anodes is described using linked mainstream models. The benefits and techniques for dealing with the accompanying issues of carbon-based hosts are discussed in general. The function, limitations, and current research advances of essential carbon-based host materials for Li-metal anodes are discussed. Finally, a conclusion is offered, as well as a future perspective for carbon-based host research is given. This chapter aims to summarize current achievements in carbon-based materials hosts and to serve as a guide for future development of carbon-based hosts for improved Li-metal anodes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 156:A694CrossRef Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 156:A694CrossRef
Zurück zum Zitat Barchasz C, Leprêtre J-C, Alloin F, Patoux S (2012) New insights into the limiting parameters of the Li/S rechargeable cell. J Power Sources 199:322–330CrossRef Barchasz C, Leprêtre J-C, Alloin F, Patoux S (2012) New insights into the limiting parameters of the Li/S rechargeable cell. J Power Sources 199:322–330CrossRef
Zurück zum Zitat Barghamadi M, Kapoor A, Wen C (2013) A review on Li-S batteries as a high efficiency rechargeable lithium battery. J Electrochem Soc 160:A1256CrossRef Barghamadi M, Kapoor A, Wen C (2013) A review on Li-S batteries as a high efficiency rechargeable lithium battery. J Electrochem Soc 160:A1256CrossRef
Zurück zum Zitat Bates J, Dudney N, Gruzalski G, Zuhr R, Choudhury A, Luck C, Robertson J (1993) Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J Power Sources 43:103–110CrossRef Bates J, Dudney N, Gruzalski G, Zuhr R, Choudhury A, Luck C, Robertson J (1993) Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J Power Sources 43:103–110CrossRef
Zurück zum Zitat Bruce PG, Hardwick LJ, Abraham KM (2011) Lithium-air and lithium-sulfur batteries. MRS Bull 36:506–512CrossRef Bruce PG, Hardwick LJ, Abraham KM (2011) Lithium-air and lithium-sulfur batteries. MRS Bull 36:506–512CrossRef
Zurück zum Zitat Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29CrossRef Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29CrossRef
Zurück zum Zitat Chen Q, Zheng H, Yang Y, Xie Q, Ma Y, Wang L, Peng DL (2019) Ion-and electron-conductive buffering layer-modified Si film for use as a high-rate long-term lithium-ion battery anode. ChemSusChem 12:252–260PubMedCrossRef Chen Q, Zheng H, Yang Y, Xie Q, Ma Y, Wang L, Peng DL (2019) Ion-and electron-conductive buffering layer-modified Si film for use as a high-rate long-term lithium-ion battery anode. ChemSusChem 12:252–260PubMedCrossRef
Zurück zum Zitat Cheng X-B, Zhang R, Zhao C-Z, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117:10403–10473PubMedCrossRef Cheng X-B, Zhang R, Zhao C-Z, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117:10403–10473PubMedCrossRef
Zurück zum Zitat Cheng X-B, Yan C, Zhang X-Q, Liu H, Zhang Q (2018) Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy Lett 3:1564–1570CrossRef Cheng X-B, Yan C, Zhang X-Q, Liu H, Zhang Q (2018) Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy Lett 3:1564–1570CrossRef
Zurück zum Zitat Cheon S-E, Ko K-S, Cho J-H, Kim S-W, Chin E-Y, Kim H-T (2003) Rechargeable lithium sulfur battery: I Structural change of sulfur cathode during discharge and charge. J Electrochem Soc 150:A796CrossRef Cheon S-E, Ko K-S, Cho J-H, Kim S-W, Chin E-Y, Kim H-T (2003) Rechargeable lithium sulfur battery: I Structural change of sulfur cathode during discharge and charge. J Electrochem Soc 150:A796CrossRef
Zurück zum Zitat Choi Y-J, Chung Y-D, Baek C-Y, Kim K-W, Ahn H-J, Ahn J-H (2008) Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell. J Power Sources 184:548–552CrossRef Choi Y-J, Chung Y-D, Baek C-Y, Kim K-W, Ahn H-J, Ahn J-H (2008) Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell. J Power Sources 184:548–552CrossRef
Zurück zum Zitat Demir-Cakan R (2015) Targeting the role of lithium sulphide formation for the rapid capacity fading in lithium-sulphur batteries. J Power Sources 282:437–443CrossRef Demir-Cakan R (2015) Targeting the role of lithium sulphide formation for the rapid capacity fading in lithium-sulphur batteries. J Power Sources 282:437–443CrossRef
Zurück zum Zitat Hao X, Zhu J, Jiang X, Wu H, Qiao J, Sun W, Wang Z, Sun K (2016) Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett 16:2981–2987PubMedCrossRef Hao X, Zhu J, Jiang X, Wu H, Qiao J, Sun W, Wang Z, Sun K (2016) Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett 16:2981–2987PubMedCrossRef
Zurück zum Zitat He X, Shi Q, Zhou X, Wan C, Jiang C (2005) In situ composite of nano SiO2–P (VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochim Acta 51:1069–1075CrossRef He X, Shi Q, Zhou X, Wan C, Jiang C (2005) In situ composite of nano SiO2–P (VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochim Acta 51:1069–1075CrossRef
Zurück zum Zitat Huggins RA (2006) Lithium electrode reactants containing hydrogen or water. J Power Sources 153:365–370CrossRef Huggins RA (2006) Lithium electrode reactants containing hydrogen or water. J Power Sources 153:365–370CrossRef
Zurück zum Zitat Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@ sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed 50:5904–5908CrossRef Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@ sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed 50:5904–5908CrossRef
Zurück zum Zitat Ji X, Nazar LF (2010) Advances in Li–S batteries. J Mater Chem 20:9821–9826CrossRef Ji X, Nazar LF (2010) Advances in Li–S batteries. J Mater Chem 20:9821–9826CrossRef
Zurück zum Zitat Jin S, Jiang Y, Ji H, Yu Y (2018) Advanced 3D current collectors for lithium-based batteries. Adv Mater 30:1802014CrossRef Jin S, Jiang Y, Ji H, Yu Y (2018) Advanced 3D current collectors for lithium-based batteries. Adv Mater 30:1802014CrossRef
Zurück zum Zitat Jung Y, Kim S (2007) New approaches to improve cycle life characteristics of lithium–sulfur cells. Electrochem Commun 9:249–254CrossRef Jung Y, Kim S (2007) New approaches to improve cycle life characteristics of lithium–sulfur cells. Electrochem Commun 9:249–254CrossRef
Zurück zum Zitat Kolosnitsyn V, Karaseva E (2008) Lithium-sulfur batteries: problems and solutions. Russ J Electrochem 44:506–509CrossRef Kolosnitsyn V, Karaseva E (2008) Lithium-sulfur batteries: problems and solutions. Russ J Electrochem 44:506–509CrossRef
Zurück zum Zitat Lai C, Gao X, Zhang B, Yan T, Zhou Z (2009) Synthesis and electrochemical performance of sulfur/highly porous carbon composites. J Phys Chem C 113:4712–4716CrossRef Lai C, Gao X, Zhang B, Yan T, Zhou Z (2009) Synthesis and electrochemical performance of sulfur/highly porous carbon composites. J Phys Chem C 113:4712–4716CrossRef
Zurück zum Zitat Lee YM, Choi N-S, Park JH, Park J-K (2003) Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J Power Sources 119:964–972CrossRef Lee YM, Choi N-S, Park JH, Park J-K (2003) Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J Power Sources 119:964–972CrossRef
Zurück zum Zitat Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206PubMedCrossRef Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206PubMedCrossRef
Zurück zum Zitat Lin C-F, Qi Y, Gregorczyk K, Lee SB, Rubloff GW (2018) Nanoscale protection layers to mitigate degradation in high-energy electrochemical energy storage systems. Acc Chem Res 51:97–106PubMedCrossRef Lin C-F, Qi Y, Gregorczyk K, Lee SB, Rubloff GW (2018) Nanoscale protection layers to mitigate degradation in high-energy electrochemical energy storage systems. Acc Chem Res 51:97–106PubMedCrossRef
Zurück zum Zitat Ling C, Banerjee D, Matsui M (2012) Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim Acta 76:270–274CrossRef Ling C, Banerjee D, Matsui M (2012) Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim Acta 76:270–274CrossRef
Zurück zum Zitat Liu B, Zhang J-G, Xu W (2018) Advancing lithium metal batteries. Joule 2:833–845CrossRef Liu B, Zhang J-G, Xu W (2018) Advancing lithium metal batteries. Joule 2:833–845CrossRef
Zurück zum Zitat Marmorstein D, Yu T, Striebel K, McLarnon F, Hou J, Cairns EJ (2000) Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89:219–226CrossRef Marmorstein D, Yu T, Striebel K, McLarnon F, Hou J, Cairns EJ (2000) Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89:219–226CrossRef
Zurück zum Zitat Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151:A1969CrossRef Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151:A1969CrossRef
Zurück zum Zitat Mo F, Liang G, Huang Z, Li H, Wang D, Zhi C (2020) An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv Mater 32:1902151CrossRef Mo F, Liang G, Huang Z, Li H, Wang D, Zhi C (2020) An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv Mater 32:1902151CrossRef
Zurück zum Zitat Monroe C, Newman J (2003) Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions. J Electrochem Soc 150:A1377CrossRef Monroe C, Newman J (2003) Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions. J Electrochem Soc 150:A1377CrossRef
Zurück zum Zitat Myung S-T, Hitoshi Y, Sun Y-K (2011) Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J Mater Chem 21:9891–9911CrossRef Myung S-T, Hitoshi Y, Sun Y-K (2011) Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J Mater Chem 21:9891–9911CrossRef
Zurück zum Zitat Niu C, Pan H, Xu W, Xiao J, Zhang J-G, Luo L, Wang C, Mei D, Meng J, Wang X (2019) Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat Nanotechnol 14:594–601PubMedCrossRef Niu C, Pan H, Xu W, Xiao J, Zhang J-G, Luo L, Wang C, Mei D, Meng J, Wang X (2019) Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat Nanotechnol 14:594–601PubMedCrossRef
Zurück zum Zitat Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195:7904–7929CrossRef Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195:7904–7929CrossRef
Zurück zum Zitat Ryu H, Ahn H, Kim K, Ahn J, Lee J-Y, Cairns EJ (2005) Self-discharge of lithium–sulfur cells using stainless-steel current-collectors. J Power Sources 140:365–369CrossRef Ryu H, Ahn H, Kim K, Ahn J, Lee J-Y, Cairns EJ (2005) Self-discharge of lithium–sulfur cells using stainless-steel current-collectors. J Power Sources 140:365–369CrossRef
Zurück zum Zitat Schneider H, Garsuch A, Panchenko A, Gronwald O, Janssen N, Novák P (2012) Influence of different electrode compositions and binder materials on the performance of lithium–sulfur batteries. J Power Sources 205:420–425CrossRef Schneider H, Garsuch A, Panchenko A, Gronwald O, Janssen N, Novák P (2012) Influence of different electrode compositions and binder materials on the performance of lithium–sulfur batteries. J Power Sources 205:420–425CrossRef
Zurück zum Zitat Strauss E, Golodnitsky D, Peled E (2000) Study of phase changes during 500 full cycles of Li/composite polymer electrolyte/FeS2 battery. Electrochim Acta 45:1519–1525CrossRef Strauss E, Golodnitsky D, Peled E (2000) Study of phase changes during 500 full cycles of Li/composite polymer electrolyte/FeS2 battery. Electrochim Acta 45:1519–1525CrossRef
Zurück zum Zitat Sun J, Huang Y, Wang W, Yu Z, Wang A, Yuan K (2008) Application of gelatin as a binder for the sulfur cathode in lithium–sulfur batteries. Electrochim Acta 53:7084–7088CrossRef Sun J, Huang Y, Wang W, Yu Z, Wang A, Yuan K (2008) Application of gelatin as a binder for the sulfur cathode in lithium–sulfur batteries. Electrochim Acta 53:7084–7088CrossRef
Zurück zum Zitat Suo L, Hu Y-S, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1–9CrossRef Suo L, Hu Y-S, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1–9CrossRef
Zurück zum Zitat Wang J, Yang J, Xie J, Xu N, Li Y (2002) Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem Commun 4:499–502CrossRef Wang J, Yang J, Xie J, Xu N, Li Y (2002) Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem Commun 4:499–502CrossRef
Zurück zum Zitat Wang J, Yang J, Wan C, Du K, Xie J, Xu N (2003) Sulfur composite cathode materials for rechargeable lithium batteries. Adv Funct Mater 13:487–492CrossRef Wang J, Yang J, Wan C, Du K, Xie J, Xu N (2003) Sulfur composite cathode materials for rechargeable lithium batteries. Adv Funct Mater 13:487–492CrossRef
Zurück zum Zitat Wang J, Chew S, Zhao Z, Ashraf S, Wexler D, Chen J, Ng S, Chou S, Liu H (2008) Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon 46:229–235CrossRef Wang J, Chew S, Zhao Z, Ashraf S, Wexler D, Chen J, Ng S, Chou S, Liu H (2008) Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon 46:229–235CrossRef
Zurück zum Zitat Xie L, Tang C, Bi Z, Song M, Fan Y, Yan C, Li X, Su F, Zhang Q, Chen C (2021) Hard carbon anodes for next-generation Li-ion batteries: review and perspective. Adv Energy Mater 11:2101650CrossRef Xie L, Tang C, Bi Z, Song M, Fan Y, Yan C, Li X, Su F, Zhang Q, Chen C (2021) Hard carbon anodes for next-generation Li-ion batteries: review and perspective. Adv Energy Mater 11:2101650CrossRef
Zurück zum Zitat Xiong S, Xie K, Diao Y, Hong X (2014) Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries. J Power Sources 246:840–845CrossRef Xiong S, Xie K, Diao Y, Hong X (2014) Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries. J Power Sources 246:840–845CrossRef
Zurück zum Zitat Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y (2011) Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5:9187–9193PubMedCrossRef Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y (2011) Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5:9187–9193PubMedCrossRef
Zurück zum Zitat Yang C-P, Yin Y-X, Zhang S-F, Li N-W, Guo Y-G (2015) Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun 6:1–9CrossRef Yang C-P, Yin Y-X, Zhang S-F, Li N-W, Guo Y-G (2015) Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun 6:1–9CrossRef
Zurück zum Zitat Yang Y, Xiong J, Zeng J, Huang J, Zhao J (2018) VGCF 3D conducting host coating on glass fiber filters for lithium metal anodes. Chem Commun 54:1178–1181CrossRef Yang Y, Xiong J, Zeng J, Huang J, Zhao J (2018) VGCF 3D conducting host coating on glass fiber filters for lithium metal anodes. Chem Commun 54:1178–1181CrossRef
Zurück zum Zitat Ye H, Xin S, Yin YX, Guo YG (2017) Advanced porous carbon materials for high-efficient lithium metal anodes. Adv Energy Mater 7:1700530CrossRef Ye H, Xin S, Yin YX, Guo YG (2017) Advanced porous carbon materials for high-efficient lithium metal anodes. Adv Energy Mater 7:1700530CrossRef
Zurück zum Zitat Zhang SS, Foster D, Read J (2010) A high energy density lithium/sulfur–oxygen hybrid battery. J Power Sources 195:3684–3688CrossRef Zhang SS, Foster D, Read J (2010) A high energy density lithium/sulfur–oxygen hybrid battery. J Power Sources 195:3684–3688CrossRef
Zurück zum Zitat Zhang R, Li NW, Cheng XB, Yin YX, Zhang Q, Guo YG (2017) Advanced micro/nanostructures for lithium metal anodes. Adv Sci 4:1600445CrossRef Zhang R, Li NW, Cheng XB, Yin YX, Zhang Q, Guo YG (2017) Advanced micro/nanostructures for lithium metal anodes. Adv Sci 4:1600445CrossRef
Zurück zum Zitat Zheng H, Zhang Q, Chen Q, Xu W, Xie Q, Cai Y, Ma Y, Qiao Z, Luo Q, Lin J (2020) 3D lithiophilic–lithiophobic–lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode. J Mater Chem A 8:313–322CrossRef Zheng H, Zhang Q, Chen Q, Xu W, Xie Q, Cai Y, Ma Y, Qiao Z, Luo Q, Lin J (2020) 3D lithiophilic–lithiophobic–lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode. J Mater Chem A 8:313–322CrossRef
Metadaten
Titel
Advanced Carbon-Based Nanostructured Framework for Li Anodes
verfasst von
Asadullah Dawood
Junaid Ahmad
Sami Ullah
Zeenat Jabeen
Zeeshan Asghar
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-2796-8_11