Skip to main content

2024 | OriginalPaper | Buchkapitel

12. Mathematical Modelling of Reactors Used for Syngas Fermentation—Contemporary Practices and Challenges

verfasst von : Dinabandhu Manna, Soumitra Pati, Sudipta De, Ranjana Chowdhury

Erschienen in: Challenges and Opportunities of Distributed Renewable Power

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biofuels can successfully replace fossil fuels as they emit less amount of greenhouse gas during combustion. Syngas fermentation is one of the sustainable routes of producing bioethanol, methane, etc., particularly from ligno-cellulosic biomass (LCB) rich in lignin. In this process, syngas generated via gasification of LCB is converted to liquid fuels with the aid of suitable microorganism (Clostridium carboxidivorans, Clostridium ljungdahlii, etc.) via acetyl-CoA pathway (Wood-Ljungdahl pathway). Syngas can also be converted to methane through microbial route. The present article discusses about the microbial principles, reactions and different reactors used for both bioethanol and methane production from syngas. The chapter aims to revisit the mathematical modelling practices for different reactors used for syngas fermentation for bioethanol formation along with identification of loopholes and possible recommendations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mofijur M, Rasul MG, Hassan NMS, Nabi MN (2019) Recent development in the production of third generation biodiesel from microalgae. Energy Procedia 156:53–58CrossRef Mofijur M, Rasul MG, Hassan NMS, Nabi MN (2019) Recent development in the production of third generation biodiesel from microalgae. Energy Procedia 156:53–58CrossRef
2.
Zurück zum Zitat Kleinekorte J, Leitl M, Zibunas C, Bardow A (2022) What Shall We Do with Steel Mill Off-Gas: Polygeneration Systems Minimizing Greenhouse Gas Emissions. Environ Sci Technol 56:13294–13304CrossRef Kleinekorte J, Leitl M, Zibunas C, Bardow A (2022) What Shall We Do with Steel Mill Off-Gas: Polygeneration Systems Minimizing Greenhouse Gas Emissions. Environ Sci Technol 56:13294–13304CrossRef
3.
Zurück zum Zitat Mosayebi A, Nasabi M (2020) Steam methane reforming on LaNiO3 perovskite-type oxide for syngas production, activity tests, and kinetic modeling. Int J Energy Res 44:5500–5515CrossRef Mosayebi A, Nasabi M (2020) Steam methane reforming on LaNiO3 perovskite-type oxide for syngas production, activity tests, and kinetic modeling. Int J Energy Res 44:5500–5515CrossRef
4.
Zurück zum Zitat Aasberg-Petersen K, Christensen TS, Nielsen CS, Dybkjær I (2003) Recent developments in autothermal reforming and pre-reforming for synthesis gas production in GTL applications. Fuel Process Technol 83:253–261CrossRef Aasberg-Petersen K, Christensen TS, Nielsen CS, Dybkjær I (2003) Recent developments in autothermal reforming and pre-reforming for synthesis gas production in GTL applications. Fuel Process Technol 83:253–261CrossRef
7.
Zurück zum Zitat Gür M, Canbaz ED (2020) Analysis of syngas production and reaction zones in hydrogen oriented underground coal gasification. Fuel 269:117331CrossRef Gür M, Canbaz ED (2020) Analysis of syngas production and reaction zones in hydrogen oriented underground coal gasification. Fuel 269:117331CrossRef
8.
Zurück zum Zitat Grimalt-Alemany A, Łężyk M, Kennes-Veiga DM et al (2020) Enrichment of mesophilic and thermophilic mixed microbial consortia for syngas biomethanation: the role of kinetic and thermodynamic competition. Waste Biomass Valoriz 11:465–481CrossRef Grimalt-Alemany A, Łężyk M, Kennes-Veiga DM et al (2020) Enrichment of mesophilic and thermophilic mixed microbial consortia for syngas biomethanation: the role of kinetic and thermodynamic competition. Waste Biomass Valoriz 11:465–481CrossRef
9.
Zurück zum Zitat Li C, Zhu X, Angelidaki I (2020) Carbon monoxide conversion and syngas biomethanation mediated by different microbial consortia. Bioresour Technol 314:123739CrossRef Li C, Zhu X, Angelidaki I (2020) Carbon monoxide conversion and syngas biomethanation mediated by different microbial consortia. Bioresour Technol 314:123739CrossRef
10.
Zurück zum Zitat Figueras J, Benbelkacem H, Dumas C, Buffière P (2021) Biomethanation of syngas by enriched mixed anaerobic consortium in pressurized agitated column. Bioresour Technol 338:125548CrossRef Figueras J, Benbelkacem H, Dumas C, Buffière P (2021) Biomethanation of syngas by enriched mixed anaerobic consortium in pressurized agitated column. Bioresour Technol 338:125548CrossRef
11.
Zurück zum Zitat Barik S, Corder RE, Clausen EC, Gaddy JL (1987) Biological conversion of coal synthesis gas to methane. Energy Prog (United States) 7 Barik S, Corder RE, Clausen EC, Gaddy JL (1987) Biological conversion of coal synthesis gas to methane. Energy Prog (United States) 7
12.
Zurück zum Zitat Lorowitz WH, Bryant MP (1984) Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Environ Microbiol 47:961–964CrossRef Lorowitz WH, Bryant MP (1984) Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Environ Microbiol 47:961–964CrossRef
13.
Zurück zum Zitat Kerby R, Niemczura W, Ziekus JG (1983) Single carbon catabolism in Acetobacterium woodii and Butyribacterium methylotrophicum by fermentation and 13C nuclear magnetic resonance measurement. J Bacteriol 155:1208–1218CrossRef Kerby R, Niemczura W, Ziekus JG (1983) Single carbon catabolism in Acetobacterium woodii and Butyribacterium methylotrophicum by fermentation and 13C nuclear magnetic resonance measurement. J Bacteriol 155:1208–1218CrossRef
14.
Zurück zum Zitat Wood HG (1982) Studies with Clostridium thermoaceticum and the resolution of the pathway used by acetogenic bacteria that grow on carbon monoxide or carbon dioxide and hydrogen. In: Proceedings of the biochemistry symposium, Palo Alto, California. Annual Reviews Inc., pp 29–56 Wood HG (1982) Studies with Clostridium thermoaceticum and the resolution of the pathway used by acetogenic bacteria that grow on carbon monoxide or carbon dioxide and hydrogen. In: Proceedings of the biochemistry symposium, Palo Alto, California. Annual Reviews Inc., pp 29–56
15.
Zurück zum Zitat Kerby R, Zeikus JG (1983) Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source. Curr Microbiol 8:27–30 Kerby R, Zeikus JG (1983) Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source. Curr Microbiol 8:27–30
16.
Zurück zum Zitat Genthner BRS, Bryant M (1982) Growth of Eubacterium limosum with carbon monoxide as the energy source. Appl Environ Microbiol 43:70–74CrossRef Genthner BRS, Bryant M (1982) Growth of Eubacterium limosum with carbon monoxide as the energy source. Appl Environ Microbiol 43:70–74CrossRef
17.
Zurück zum Zitat Mayer F, Lurz R, Schoberth S (1977) Electron microscopic investigation of the hydrogen-oxidizing acetate-forming anaerobic bacterium Acetobacterium woodii. Arch Microbiol 115:207–213CrossRef Mayer F, Lurz R, Schoberth S (1977) Electron microscopic investigation of the hydrogen-oxidizing acetate-forming anaerobic bacterium Acetobacterium woodii. Arch Microbiol 115:207–213CrossRef
18.
Zurück zum Zitat Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Syst Evol Microbiol 27:355–361 Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Syst Evol Microbiol 27:355–361
19.
Zurück zum Zitat Sleat R, Mah A, Robinson R (1985) Acetoanaerobium noterae: new genus, new species, an anaerobic bacterium that forms acetate from hydrogen and carbon dioxide. Int J Syst Bacteriol 35:10–15CrossRef Sleat R, Mah A, Robinson R (1985) Acetoanaerobium noterae: new genus, new species, an anaerobic bacterium that forms acetate from hydrogen and carbon dioxide. Int J Syst Bacteriol 35:10–15CrossRef
20.
Zurück zum Zitat Uffen RL (1976) Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Natl Acad Sci 73:3298–3302CrossRef Uffen RL (1976) Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Natl Acad Sci 73:3298–3302CrossRef
21.
Zurück zum Zitat Dashekvicz MP, Uffen RL (1979) Identification of a carbon monoxide-metabolizing bacterium as a strain of Rhodopseudomonas gelatinosa (Molisch) van Niel. Int J Syst Evol Microbiol 29:145–148 Dashekvicz MP, Uffen RL (1979) Identification of a carbon monoxide-metabolizing bacterium as a strain of Rhodopseudomonas gelatinosa (Molisch) van Niel. Int J Syst Evol Microbiol 29:145–148
22.
Zurück zum Zitat Bergey DH (1994) Bergey’s manual of determinative bacteriology. Lippincott Williams & Wilkins Bergey DH (1994) Bergey’s manual of determinative bacteriology. Lippincott Williams & Wilkins
23.
Zurück zum Zitat Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180CrossRef Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180CrossRef
24.
Zurück zum Zitat Balch WE, Fox GE, Magrum LJ et al (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296CrossRef Balch WE, Fox GE, Magrum LJ et al (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296CrossRef
25.
Zurück zum Zitat Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. Microbiology 61:205–218 Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. Microbiology 61:205–218
26.
Zurück zum Zitat Jones WJ, Nagle DP Jr, Whitman WB (1987) Methanogens and the diversity of archaebacteria. Microbiol Rev 51:135–177CrossRef Jones WJ, Nagle DP Jr, Whitman WB (1987) Methanogens and the diversity of archaebacteria. Microbiol Rev 51:135–177CrossRef
29.
Zurück zum Zitat Gunes B (2021) A critical review on biofilm-based reactor systems for enhanced syngas fermentation processes. Renew Sustain Energy Rev 143:110950CrossRef Gunes B (2021) A critical review on biofilm-based reactor systems for enhanced syngas fermentation processes. Renew Sustain Energy Rev 143:110950CrossRef
30.
Zurück zum Zitat Shen N, Dai K, Xia X-Y et al (2018) Conversion of syngas (CO and H2) to biochemicals by mixed culture fermentation in mesophilic and thermophilic hollow-fiber membrane biofilm reactors. J Clean Prod 202:536–542CrossRef Shen N, Dai K, Xia X-Y et al (2018) Conversion of syngas (CO and H2) to biochemicals by mixed culture fermentation in mesophilic and thermophilic hollow-fiber membrane biofilm reactors. J Clean Prod 202:536–542CrossRef
31.
Zurück zum Zitat Zhang F, Ding J, Zhang Y et al (2013) Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Res 47:6122–6129CrossRef Zhang F, Ding J, Zhang Y et al (2013) Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Res 47:6122–6129CrossRef
32.
Zurück zum Zitat Phillips JR, Huhnke RL, Atiyeh HK (2017) Syngas fermentation: a microbial conversion process of gaseous substrates to various products. Fermentation 3:28CrossRef Phillips JR, Huhnke RL, Atiyeh HK (2017) Syngas fermentation: a microbial conversion process of gaseous substrates to various products. Fermentation 3:28CrossRef
33.
Zurück zum Zitat Wang Y-Q, Yu S-J, Zhang F et al (2017) Enhancement of acetate productivity in a thermophilic (55 C) hollow-fiber membrane biofilm reactor with mixed culture syngas (H2/CO2) fermentation. Appl Microbiol Biotechnol 101:2619–2627 Wang Y-Q, Yu S-J, Zhang F et al (2017) Enhancement of acetate productivity in a thermophilic (55 C) hollow-fiber membrane biofilm reactor with mixed culture syngas (H2/CO2) fermentation. Appl Microbiol Biotechnol 101:2619–2627
34.
Zurück zum Zitat Wang H-J, Dai K, Xia X-Y et al (2018) Tunable production of ethanol and acetate from synthesis gas by mesophilic mixed culture fermentation in a hollow fiber membrane biofilm reactor. J Clean Prod 187:165–170CrossRef Wang H-J, Dai K, Xia X-Y et al (2018) Tunable production of ethanol and acetate from synthesis gas by mesophilic mixed culture fermentation in a hollow fiber membrane biofilm reactor. J Clean Prod 187:165–170CrossRef
35.
Zurück zum Zitat Zhang F, Ding J, Shen N et al (2013) In situ hydrogen utilization for high fraction acetate production in mixed culture hollow-fiber membrane biofilm reactor. Appl Microbiol Biotechnol 97:10233–10240CrossRef Zhang F, Ding J, Shen N et al (2013) In situ hydrogen utilization for high fraction acetate production in mixed culture hollow-fiber membrane biofilm reactor. Appl Microbiol Biotechnol 97:10233–10240CrossRef
36.
Zurück zum Zitat Stoll IK, Boukis N, Sauer J (2020) Syngas fermentation to alcohols: reactor technology and application perspective. Chemie Ing Tech 92:125–136CrossRef Stoll IK, Boukis N, Sauer J (2020) Syngas fermentation to alcohols: reactor technology and application perspective. Chemie Ing Tech 92:125–136CrossRef
37.
Zurück zum Zitat Ungerman AJ, Heindel TJ (2007) Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations. Biotechnol Prog 23:613–620CrossRef Ungerman AJ, Heindel TJ (2007) Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations. Biotechnol Prog 23:613–620CrossRef
39.
Zurück zum Zitat Shen Y, Brown R, Wen Z (2014) Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance. Biochem Eng J 85:21–29CrossRef Shen Y, Brown R, Wen Z (2014) Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance. Biochem Eng J 85:21–29CrossRef
41.
Zurück zum Zitat Yasin M, Jeong Y, Park S et al (2015) Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Bioresour Technol 177:361–374CrossRef Yasin M, Jeong Y, Park S et al (2015) Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Bioresour Technol 177:361–374CrossRef
42.
Zurück zum Zitat Smith JM (1956) Chemical engineering kinetics. McGraw-Hill Smith JM (1956) Chemical engineering kinetics. McGraw-Hill
43.
Zurück zum Zitat Froment GF, Bischoff KB, De Wilde J (1990) Chemical reactor analysis and design. Wiley, New York Froment GF, Bischoff KB, De Wilde J (1990) Chemical reactor analysis and design. Wiley, New York
44.
Zurück zum Zitat Schulte MJ, Wiltgen J, Ritter J et al (2016) A high gas fraction, reduced power, syngas bioprocessing method demonstrated with a Clostridium ljungdahlii OTA1 paper biocomposite. Biotechnol Bioeng 113:1913–1923CrossRef Schulte MJ, Wiltgen J, Ritter J et al (2016) A high gas fraction, reduced power, syngas bioprocessing method demonstrated with a Clostridium ljungdahlii OTA1 paper biocomposite. Biotechnol Bioeng 113:1913–1923CrossRef
45.
Zurück zum Zitat Munasinghe PC, Khanal SK (2012) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modeling using a composite hollow fiber (CHF) membrane bioreactor. Bioresour Technol 122:130–136CrossRef Munasinghe PC, Khanal SK (2012) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modeling using a composite hollow fiber (CHF) membrane bioreactor. Bioresour Technol 122:130–136CrossRef
46.
Zurück zum Zitat Picard C, Logette S, Schrotter J-C et al (2012) Mass transfer in a membrane aerated biofilm. Water Res 46:4761–4769CrossRef Picard C, Logette S, Schrotter J-C et al (2012) Mass transfer in a membrane aerated biofilm. Water Res 46:4761–4769CrossRef
47.
Zurück zum Zitat Mederos FS, Ancheyta J, Chen J (2009) Review on criteria to ensure ideal behaviors in trickle-bed reactors. Appl Catal A Gen 355:1–19CrossRef Mederos FS, Ancheyta J, Chen J (2009) Review on criteria to ensure ideal behaviors in trickle-bed reactors. Appl Catal A Gen 355:1–19CrossRef
48.
Zurück zum Zitat López LR, Bezerra T, Mora M et al (2016) Influence of trickling liquid velocity and flow pattern in the improvement of oxygen transport in aerobic biotrickling filters for biogas desulfurization. J Chem Technol Biotechnol 91:1031–1039CrossRef López LR, Bezerra T, Mora M et al (2016) Influence of trickling liquid velocity and flow pattern in the improvement of oxygen transport in aerobic biotrickling filters for biogas desulfurization. J Chem Technol Biotechnol 91:1031–1039CrossRef
49.
Zurück zum Zitat Shen Y, Brown R, Wen Z (2014) Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor. Appl Energy 136:68–76CrossRef Shen Y, Brown R, Wen Z (2014) Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor. Appl Energy 136:68–76CrossRef
50.
Zurück zum Zitat Lee PH, Ni SQ, Chang SY et al (2012) Enhancement of carbon monoxide mass transfer using an innovative external hollow fiber membrane (HFM) diffuser for syngas fermentation: Experimental studies and model development. Chem Eng J 184:268–277 Lee PH, Ni SQ, Chang SY et al (2012) Enhancement of carbon monoxide mass transfer using an innovative external hollow fiber membrane (HFM) diffuser for syngas fermentation: Experimental studies and model development. Chem Eng J 184:268–277
51.
Zurück zum Zitat Yasin M, Park S, Jeong Y et al (2014) Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation. Bioresour Technol 169:637–643CrossRef Yasin M, Park S, Jeong Y et al (2014) Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation. Bioresour Technol 169:637–643CrossRef
52.
Zurück zum Zitat Asimakopoulos K, Gavala HN, Skiadas IV (2018) Reactor systems for syngas fermentation processes: a review. Chem Eng J 348:732–744CrossRef Asimakopoulos K, Gavala HN, Skiadas IV (2018) Reactor systems for syngas fermentation processes: a review. Chem Eng J 348:732–744CrossRef
53.
Zurück zum Zitat Asimakopoulos K, Łężyk M, Grimalt-Alemany A et al (2020) Temperature effects on syngas biomethanation performed in a trickle bed reactor. Chem Eng J 393:124739CrossRef Asimakopoulos K, Łężyk M, Grimalt-Alemany A et al (2020) Temperature effects on syngas biomethanation performed in a trickle bed reactor. Chem Eng J 393:124739CrossRef
54.
Zurück zum Zitat Asimakopoulos K, Kaufmann-Elfang M, Lundholm-Høffner C et al (2021) Scale up study of a thermophilic trickle bed reactor performing syngas biomethanation. Appl Energy 290:116771CrossRef Asimakopoulos K, Kaufmann-Elfang M, Lundholm-Høffner C et al (2021) Scale up study of a thermophilic trickle bed reactor performing syngas biomethanation. Appl Energy 290:116771CrossRef
56.
Zurück zum Zitat Kimmel DE, Klasson KT, Clausen EC, Gaddy JL (1991) Performance of trickle-bed bioreactors for converting synthesis gas to methane. Appl Biochem Biotechnol 28:457–469CrossRef Kimmel DE, Klasson KT, Clausen EC, Gaddy JL (1991) Performance of trickle-bed bioreactors for converting synthesis gas to methane. Appl Biochem Biotechnol 28:457–469CrossRef
57.
Zurück zum Zitat Chandolias K, Pekgenc E, Taherzadeh MJ (2019) Floating membrane bioreactors with high gas hold-up for syngas-to-biomethane conversion. Energies 12:1046CrossRef Chandolias K, Pekgenc E, Taherzadeh MJ (2019) Floating membrane bioreactors with high gas hold-up for syngas-to-biomethane conversion. Energies 12:1046CrossRef
58.
Zurück zum Zitat Westman SY, Chandolias K, Taherzadeh MJ (2016) Syngas biomethanation in a semi-continuous reverse membrane bioreactor (RMBR). Fermentation 2:8CrossRef Westman SY, Chandolias K, Taherzadeh MJ (2016) Syngas biomethanation in a semi-continuous reverse membrane bioreactor (RMBR). Fermentation 2:8CrossRef
59.
Zurück zum Zitat Diender M, Uhl PS, Bitter JH et al (2018) High rate biomethanation of carbon monoxide-rich gases via a thermophilic synthetic coculture. ACS Sustain Chem Eng 6:2169–2176CrossRef Diender M, Uhl PS, Bitter JH et al (2018) High rate biomethanation of carbon monoxide-rich gases via a thermophilic synthetic coculture. ACS Sustain Chem Eng 6:2169–2176CrossRef
60.
Zurück zum Zitat Klasson KT, Ackerson MD, Clausen EC, Gaddy JL (1991) Bioreactors for synthesis gas fermentations. Resour Conserv Recycl 5:145–165CrossRef Klasson KT, Ackerson MD, Clausen EC, Gaddy JL (1991) Bioreactors for synthesis gas fermentations. Resour Conserv Recycl 5:145–165CrossRef
61.
Zurück zum Zitat Munasinghe PC, Khanal SK (2014) Evaluation of hydrogen and carbon monoxide mass transfer and a correlation between the myoglobin-protein bioassay and gas chromatography method for carbon monoxide determination. RSC Adv 4:37575–37581CrossRef Munasinghe PC, Khanal SK (2014) Evaluation of hydrogen and carbon monoxide mass transfer and a correlation between the myoglobin-protein bioassay and gas chromatography method for carbon monoxide determination. RSC Adv 4:37575–37581CrossRef
62.
Zurück zum Zitat Munasinghe PC, Khanal SK (2010) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Prog 26:1616–1621CrossRef Munasinghe PC, Khanal SK (2010) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Prog 26:1616–1621CrossRef
63.
Zurück zum Zitat Orgill JJ, Atiyeh HK, Devarapalli M et al (2013) A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors. Bioresour Technol 133:340–346CrossRef Orgill JJ, Atiyeh HK, Devarapalli M et al (2013) A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors. Bioresour Technol 133:340–346CrossRef
64.
Zurück zum Zitat Shen Y, Brown RC, Wen Z (2017) Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Appl Energy 187:585–594CrossRef Shen Y, Brown RC, Wen Z (2017) Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Appl Energy 187:585–594CrossRef
65.
Zurück zum Zitat Vega JL, Prieto S, Elmore BB et al (1989) The biological production of ethanol from synthesis gas. Appl Biochem Biotechnol 20:781–797CrossRef Vega JL, Prieto S, Elmore BB et al (1989) The biological production of ethanol from synthesis gas. Appl Biochem Biotechnol 20:781–797CrossRef
66.
Zurück zum Zitat Vega JL, Clausen EC, Gaddy JL (1989) Study of gaseous substrate fermentations: carbon monoxide conversion to acetate 1 batch culture. Biotechnol Bioeng 34:774–784 Vega JL, Clausen EC, Gaddy JL (1989) Study of gaseous substrate fermentations: carbon monoxide conversion to acetate 1 batch culture. Biotechnol Bioeng 34:774–784
67.
Zurück zum Zitat Pheil CG, Ordal ZJ (1967) Sporulation of the “thermophilic anaerobes.” Appl Microbiol 15:893–898CrossRef Pheil CG, Ordal ZJ (1967) Sporulation of the “thermophilic anaerobes.” Appl Microbiol 15:893–898CrossRef
68.
Zurück zum Zitat Bailey JE, Ollis DF (2018) Biochemical engineering fundamentals. McGraw-Hill Bailey JE, Ollis DF (2018) Biochemical engineering fundamentals. McGraw-Hill
69.
Zurück zum Zitat Schuler M, Kargi F (2002) Bioprocess engineering basic concepts, 2nd edn. Prentice-Hall Inc., New Jersey Schuler M, Kargi F (2002) Bioprocess engineering basic concepts, 2nd edn. Prentice-Hall Inc., New Jersey
70.
Zurück zum Zitat Vega JL, Antorrena GM, Clausen EC, Gaddy JL (1989) Study of gaseous substrate fermentations: carbon monoxide conversion to acetate 2 continuous culture. Biotechnol Bioeng 34:785–793 Vega JL, Antorrena GM, Clausen EC, Gaddy JL (1989) Study of gaseous substrate fermentations: carbon monoxide conversion to acetate 2 continuous culture. Biotechnol Bioeng 34:785–793
72.
Zurück zum Zitat Chen J, Gomez JA, Höffner K et al (2015) Metabolic modeling of synthesis gas fermentation in bubble column reactors. Biotechnol Biofuels 8:1–12CrossRef Chen J, Gomez JA, Höffner K et al (2015) Metabolic modeling of synthesis gas fermentation in bubble column reactors. Biotechnol Biofuels 8:1–12CrossRef
73.
Zurück zum Zitat Chen X, Ni B-J (2016) Anaerobic conversion of hydrogen and carbon dioxide to fatty acids production in a membrane biofilm reactor: A modeling approach. Chem Eng J 306:1092–1098CrossRef Chen X, Ni B-J (2016) Anaerobic conversion of hydrogen and carbon dioxide to fatty acids production in a membrane biofilm reactor: A modeling approach. Chem Eng J 306:1092–1098CrossRef
74.
Zurück zum Zitat Jang N, Yasin M, Kang H et al (2018) Bubble coalescence suppression driven carbon monoxide (CO)-water mass transfer increase by electrolyte addition in a hollow fiber membrane bioreactor (HFMBR) for microbial CO conversion to ethanol. Bioresour Technol 263:375–384CrossRef Jang N, Yasin M, Kang H et al (2018) Bubble coalescence suppression driven carbon monoxide (CO)-water mass transfer increase by electrolyte addition in a hollow fiber membrane bioreactor (HFMBR) for microbial CO conversion to ethanol. Bioresour Technol 263:375–384CrossRef
Metadaten
Titel
Mathematical Modelling of Reactors Used for Syngas Fermentation—Contemporary Practices and Challenges
verfasst von
Dinabandhu Manna
Soumitra Pati
Sudipta De
Ranjana Chowdhury
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1406-3_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.