Skip to main content

2024 | OriginalPaper | Buchkapitel

DyAdapTransformer: Dynamic Adaptive Spatial-Temporal Graph Transformer for Traffic Prediction

verfasst von : Hui Dong, Xiao Pan, Xiao Chen, Jing Sun, Shuhai Wang

Erschienen in: Spatial Data and Intelligence

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The transformer-based method is a popular choice for medium and long-term traffic prediction. However, it still suffers from some problems. The first is that spatial position embedding has poor interpretability. Additionally, the spatial-temporal correlation learning can struggle to reflect the actual complexity of traffic networks relationships. To address the above problems, we propose a traffic prediction framework for dynamic adaptive spatial-temporal graph transformer (DyAdapTransformer). Our method uses the method of random walk to embed the spatial position. The analyzability between transition probability and spatial position representation enhances the interpretability of the model. When learning spatial-temporal correlation, a method of dynamic adaptive graph attention network is proposed. We compared with our framework with four baselines on three datasets. The results show that DyAdapTransformer has a better predictive performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang, Y., Jing, C.: Spatiotemporal graph convolutional network for multi-scale traffic forecasting. ISPRS Int. J. Geo Inf. 11(2), 102 (2022)CrossRef Wang, Y., Jing, C.: Spatiotemporal graph convolutional network for multi-scale traffic forecasting. ISPRS Int. J. Geo Inf. 11(2), 102 (2022)CrossRef
2.
Zurück zum Zitat Shin, Y., Yoon, Y.: PGCN: progressive graph convolutional networks for spatial-temporal traffic forecasting. arXiv preprint arXiv:2202.08982 (2022) Shin, Y., Yoon, Y.: PGCN: progressive graph convolutional networks for spatial-temporal traffic forecasting. arXiv preprint arXiv:​2202.​08982 (2022)
3.
Zurück zum Zitat Djenouri, Y., Belhadi, A., Srivastava, G., et al.: Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting. Futur. Gener. Comput. Syst. 139, 100–108 (2023)CrossRef Djenouri, Y., Belhadi, A., Srivastava, G., et al.: Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting. Futur. Gener. Comput. Syst. 139, 100–108 (2023)CrossRef
4.
Zurück zum Zitat Ali, A., Zhu, Y., Zakarya, M.: Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction. Neural Netw. 145, 233–247 (2022)CrossRef Ali, A., Zhu, Y., Zakarya, M.: Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction. Neural Netw. 145, 233–247 (2022)CrossRef
5.
Zurück zum Zitat Zhao, L., Song, Y., Zhang, C., et al.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848–3858 (2019)CrossRef Zhao, L., Song, Y., Zhang, C., et al.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848–3858 (2019)CrossRef
6.
Zurück zum Zitat Chen, C., Li, K., Teo, S.G., et al.: Gated residual recurrent graph neural networks for traffic prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 485–492 (2019) Chen, C., Li, K., Teo, S.G., et al.: Gated residual recurrent graph neural networks for traffic prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 485–492 (2019)
7.
Zurück zum Zitat Ye, J., Zhao, J., Ye, K., et al.: Multi-STGCnet: a graph convolution based spatial-temporal framework for subway passenger flow forecasting. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020) Ye, J., Zhao, J., Ye, K., et al.: Multi-STGCnet: a graph convolution based spatial-temporal framework for subway passenger flow forecasting. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)
8.
Zurück zum Zitat Bai, L., Yao, L., Li, C., et al.: Adaptive graph convolutional recurrent network for traffic forecasting. Adv. Neural. Inf. Process. Syst. 33, 17804–17815 (2020) Bai, L., Yao, L., Li, C., et al.: Adaptive graph convolutional recurrent network for traffic forecasting. Adv. Neural. Inf. Process. Syst. 33, 17804–17815 (2020)
9.
Zurück zum Zitat Li, Y., Yu, R., Shahabi, C., et al.: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017) Li, Y., Yu, R., Shahabi, C., et al.: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:​1707.​01926 (2017)
10.
Zurück zum Zitat Huang, R., Huang, C., Liu, Y., et al.: LSGCN: long short-term traffic prediction with graph convolutional networks. In: IJCAI, vol. 7, pp. 2355–2361 (2020) Huang, R., Huang, C., Liu, Y., et al.: LSGCN: long short-term traffic prediction with graph convolutional networks. In: IJCAI, vol. 7, pp. 2355–2361 (2020)
11.
Zurück zum Zitat Khaled, A., Elsir, A.M.T., Shen, Y.: TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network. Knowl.-Based Syst. 249, 108990 (2022)CrossRef Khaled, A., Elsir, A.M.T., Shen, Y.: TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network. Knowl.-Based Syst. 249, 108990 (2022)CrossRef
12.
Zurück zum Zitat Chen, L., Shao, W., Lv, M., et al.: AARGNN: an attentive attributed recurrent graph neural network for traffic flow prediction considering multiple dynamic factors. IEEE Trans. Intell. Transp. Syst. 23(10), 17201–17211 (2022)CrossRef Chen, L., Shao, W., Lv, M., et al.: AARGNN: an attentive attributed recurrent graph neural network for traffic flow prediction considering multiple dynamic factors. IEEE Trans. Intell. Transp. Syst. 23(10), 17201–17211 (2022)CrossRef
13.
Zurück zum Zitat Li, M., Zhu, Z.: Spatial-temporal fusion graph neural networks for traffic flow forecasting. In: Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 5, pp. 4189–4196 (2021) Li, M., Zhu, Z.: Spatial-temporal fusion graph neural networks for traffic flow forecasting. In: Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 5, pp. 4189–4196 (2021)
14.
Zurück zum Zitat Wu, Z., Pan, S., Long, G., et al.: Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019) Wu, Z., Pan, S., Long, G., et al.: Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:​1906.​00121 (2019)
15.
Zurück zum Zitat Song, C., Lin, Y., Guo, S., et al.: Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, pp. 914–921 (2020) Song, C., Lin, Y., Guo, S., et al.: Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, pp. 914–921 (2020)
16.
Zurück zum Zitat Wang, Y., Fang, S., Zhang, C., et al.: TVGCN: Time-variant graph convolutional network for traffic forecasting. Neurocomputing 471, 118–129 (2022)CrossRef Wang, Y., Fang, S., Zhang, C., et al.: TVGCN: Time-variant graph convolutional network for traffic forecasting. Neurocomputing 471, 118–129 (2022)CrossRef
17.
Zurück zum Zitat Guo, G., Yuan, W., Liu, J., et al.: Traffic forecasting via dilated temporal convolution with peak-sensitive loss. IEEE Intell. Transp. Syst. Mag. 15(1) (2023) Guo, G., Yuan, W., Liu, J., et al.: Traffic forecasting via dilated temporal convolution with peak-sensitive loss. IEEE Intell. Transp. Syst. Mag. 15(1) (2023)
18.
Zurück zum Zitat Guo, S., Lin, Y., Wan, H., et al.: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans. Knowl. Data Eng. 34(11), 5415–5428 (2021)CrossRef Guo, S., Lin, Y., Wan, H., et al.: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans. Knowl. Data Eng. 34(11), 5415–5428 (2021)CrossRef
19.
Zurück zum Zitat Ye, X., Fang, S., Sun, F., et al.: Meta graph transformer: a novel framework for spatial–temporal traffic prediction. Neurocomputing 491, 544–563 (2022)CrossRef Ye, X., Fang, S., Sun, F., et al.: Meta graph transformer: a novel framework for spatial–temporal traffic prediction. Neurocomputing 491, 544–563 (2022)CrossRef
20.
Zurück zum Zitat Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018) Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)
21.
Zurück zum Zitat Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv. Neural Inf. Process. Syst. 14 (2001) Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv. Neural Inf. Process. Syst. 14 (2001)
22.
Zurück zum Zitat Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
23.
Zurück zum Zitat Xu, M., Dai, W., Liu, C., et al.: Spatial-temporal transformer networks for traffic flow forecasting. arXiv preprint arXiv:2001.02908 (2020) Xu, M., Dai, W., Liu, C., et al.: Spatial-temporal transformer networks for traffic flow forecasting. arXiv preprint arXiv:​2001.​02908 (2020)
24.
Zurück zum Zitat Cai, L., Janowicz, K., Mai, G., et al.: Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting. Trans. GIS 24(3), 736–755 (2020)CrossRef Cai, L., Janowicz, K., Mai, G., et al.: Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting. Trans. GIS 24(3), 736–755 (2020)CrossRef
25.
Zurück zum Zitat Li, G., Zhong, S., Deng, X., et al.: A lightweight and accurate spatial-temporal transformer for traffic forecasting. IEEE Trans. Knowl. Data Eng. (2022) Li, G., Zhong, S., Deng, X., et al.: A lightweight and accurate spatial-temporal transformer for traffic forecasting. IEEE Trans. Knowl. Data Eng. (2022)
26.
Zurück zum Zitat Chen, K., Chen, G., Xu, D., et al.: NAST: non-aut oregressive spatial-temporal transformer for time series forecasting. arXiv preprint arXiv:2102.05624 (2021) Chen, K., Chen, G., Xu, D., et al.: NAST: non-aut oregressive spatial-temporal transformer for time series forecasting. arXiv preprint arXiv:​2102.​05624 (2021)
27.
Zurück zum Zitat Bogaerts, T., Masegosa, A.D., Angarita-Zapata, J.S., et al.: A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data. Transp. Res. Part C: Emerg. Technol. 112, 62–77 (2020)CrossRef Bogaerts, T., Masegosa, A.D., Angarita-Zapata, J.S., et al.: A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data. Transp. Res. Part C: Emerg. Technol. 112, 62–77 (2020)CrossRef
28.
Zurück zum Zitat Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014) Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)
29.
Zurück zum Zitat Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016) Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)
30.
Zurück zum Zitat He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
32.
Zurück zum Zitat Liu, L., Chen, J., Wu, H., et al.: Physical-virtual collaboration modeling for intra-and inter-station metro ridership prediction. IEEE Trans. Intell. Transp. Syst. 23(4), 3377–3391 (2020)CrossRef Liu, L., Chen, J., Wu, H., et al.: Physical-virtual collaboration modeling for intra-and inter-station metro ridership prediction. IEEE Trans. Intell. Transp. Syst. 23(4), 3377–3391 (2020)CrossRef
33.
Zurück zum Zitat Chen, C., Petty, K., Skabardonis, A., et al.: Freeway performance measurement system: mining loop detector data. Transp. Res. Rec. 1748(1), 96–102 (2001)CrossRef Chen, C., Petty, K., Skabardonis, A., et al.: Freeway performance measurement system: mining loop detector data. Transp. Res. Rec. 1748(1), 96–102 (2001)CrossRef
34.
Zurück zum Zitat Paszke, A., Gross, S., Massa, F., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019) Paszke, A., Gross, S., Massa, F., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)
Metadaten
Titel
DyAdapTransformer: Dynamic Adaptive Spatial-Temporal Graph Transformer for Traffic Prediction
verfasst von
Hui Dong
Xiao Pan
Xiao Chen
Jing Sun
Shuhai Wang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2966-1_17

Premium Partner